区块链矩形图怎么做(区块链矩阵什么意思)

区块链:四维空间思维导图

技术的革新总是带来社会的巨大变革,比如第一次工业革命,开创了以机器代替手工劳动的时代,以蒸汽机作为动力机被广泛使用为标志的。这一次技术革命和与之相关的社会关系的变革,被称为第一次工业革命或者产业革命。第二次工业革命帮助人类进入了“电气时代”。 第二次工业革命极大地推动了社会生产力的发展,对人类社会的经济、政治、文化、军事,科技和生产力产生了深远的影响。资本主义生产的社会化大大加强,垄断组织应运而生。第三次科技革命以原子能、电子计算机、空间技术和生物工程的发明和应用为主要标志,涉及信息技术、新能源技术、新材料技术、生物技术、空间技术和海洋技术等诸多领域的一场信息控制技术革命更是使社会发展进入一个新的高度,而如今信息化时代,区块链技术即将为信息发展带来更加翻天覆地的变化,可能带来第四次技术革命,

长久以来,去中心化是区块链被人们提到最多的特性,除了去中心化之外,区块链还有一个特性就是开放性,比较少被提到,但它也很重要,甚至可以说开放性是去中心化特性的保证之一。当人们提起区块链开放性的时候,有各种各样的说法,有人说区块链经济就是开源经济,有人说是区块链是最伟大之处是无需许可的创新协议,有人说区块链最有价值的地方在于开放金融,还有人说区块链改变了传统的公司制组织结构,它创造了一种新的基于通证的经济体系,在这种经济体系下可以使得传统的封闭公司变成一个开放的通证形态,使得人类的大规模强协作成为可能。关于区块链的来龙去脉等等如果用文字性的东西讲出来可能会显得枯燥,下面有一张图——《区块链四维空间思维导图》可以完美的解决很多人心中关于区块链中的众多疑问。

区块链矩形图怎么做(区块链矩阵什么意思)

【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。

2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES, 主要用于加密信息流。

伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。

ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段 。

ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。

ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。

ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

meta charset="utf-8"

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式 K = k G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。 *

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k G计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么k G怎么计算呢?如何计算k G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q = 0, 故P+R = -Q , 如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。

也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

于是乎得到 2 P = -Q (是不是与我们非对称算法的公式 K = k G 越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。

选一个随机数 k, 那么k * P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111

由于2 P = -Q 所以 这样就计算出了k P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。

签名过程:

生成随机数R, 计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M, RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。

公式推论:

HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。

Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。

Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。

计算ECDH阶段:

Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。

Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。

共享秘钥验证:

Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'

故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。

2、签名算法采用的是 ECDSA

3、认证方式采用的是 H-MAC

4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里

H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

在 以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

如何利用外部块制作CAD图块素材库

长期从事CAD相关工作的我们都知道,图块是有多个对象组成的几何图形并且具有块名。通过建立图块,用户可以将多个对象作为一个整体来操作。

创建图块之前需要有原图形对象。才能使用CAD创建为块。可以定义一个或者多个图形对象为图块;绘制一个矩形图形对象,以便于定义其为内部图块。

菜单栏:在菜单栏点击“绘图-块-创建块”选项,执行创建块命令;

执行该命令后,系统会弹出【块定义】对话框弹窗,该对话框中常用选项的功能介绍如下:

【名称】文本框:用于输入或者选择块的名称。

【拾取基点】按钮:单击该按钮,系统就可以切换绘图窗口中拾取基点。

【选择对象】按钮:单击该按钮,系统切换到绘图窗口中拾取创建块的对象。

【保留对象】单选按钮:创建块之后保留源对象不变。

【转换为块】单选按钮:创建块之后将源对象转换为块。

【删除对象】单选按钮:创建块之后删除源对象。

【允许分解】复选框:勾选该选项,允许块被分解。

在弹出的【块定义】对话框中,我们具体操作如下:

1.在【名称】文本框中输入“矩形图块”作为名称;

2.单击【【拾取基点】按钮,返回绘图区指定图形左上角点作为块的基点;

3.之后单击【选择对象】按钮,在绘图区选择整个图形,按空格键返回对话框;

4.然后点击【转换为块】单选按钮,创建内部图块之后将源对象转换为块;

5.最后单击【确定】按钮,完成内部图块的创建,此时图形成为一个整体。

有谁知道能解释一下有向无环图(DAG)么?怎么用程序做出来,及怎么应用到经济学实证上?

我们说区块链目前还不成熟,有各种各样的问题,比如说处理速度慢、手续费高昂、存在安全隐患等等,这些都是用户最直观的体验,体验不是太好。区块链还有一个问题,那就是高并发问题。

高并发问题是怎么回事呢,我们简单说一下。高并发是计算机领域的问题,简单来讲,高并发问题就是系统无法顺利同时运行多个任务。

很多任务同时运行,一大堆用户涌进来,系统承受不住这么多的任务,会出现高并发问题,你的系统就卡住了,就好比春运时候,12306系统总是卡住,有可能就是高并发问题造成的。

传统互联网尚且存在高并发问题,区块链网络自然也存在这个问题,毕竟区块链的成熟程度比起传统互联网,还有很大的差距。但是,如果没有安全、可靠和高效的公链,整个区块链产业的发展都将受到严重制约,应用落地也是空谈。

在这种背景下,DAG 技术就被提出来了,DAG 的全称是“Directed Acyclic Graph”,中文翻译为“有向无环图”。

DAG有向无环图是怎么回事呢,它到底能起到什么作用呢?我们下面解释一下。

一、DAG:一个新型的数据结构

DAG,中文名字叫“有向无环图”,从字面意思看,“有向"就是说它是有方向的,

“无环”就是说它是没有环路的、不能形成闭环的。所以,DAG其实是一种新型的数据结构,这个数据结构是有方向的,同时又是不能形成闭环的。

传统区块来讲,我们总是以“区块”为单位,一个区块里往往包含了多笔交易信息。而在DAG中,没有区块的概念,而是以“单元”为单位,每个单元记录的是单个用户的交易,组成的单元不是区块,而是一笔笔的交易,这样一来,可以省去打包出块的时间。

简单来说,区块链和DAG有向无环图最大的区别就是:区块链是一个接一个的区块来存储和验证交易的分布式账本,而DAG则是把每笔交易都看成一个区块,每一笔交易都可以链接到多个先前的交易来进行验证。

二、DAG 的工作原理

传统区块链上,就拿比特币来讲,它是单链式的结构,区块与区块之间按照时间戳的先后顺序排列开来(如图一),数据记录在一条主链上。用不太恰当的比喻来讲,这个

“单链式”结构是一条一字排列的链。

区块链只有一条单链,打包出块就无法并发执行。新的区块会加入到原先的最长链之上,所有节点都以最长链为准,继续按照时间戳的顺序无限蔓延下去。而对于DAG来讲,每个新加入的单元,不仅只加入到最长链的一个单元,还要加入到之前所有的单元(如图二)。

举个例子:假设我发布了一个新的交易,此时DAG结构已经有2个有效的交易单元,那么我的交易单元会主动同时链接到前面的2个之中,去验证并确认,直到链接到创世单元,而且,上一个单元的哈希会包含到自己的单元里面。

换句话说,你要想进行一笔交易,就必须要验证前面的交易,具体验证几个交易,根据不同的规则来进行。这种验证手段,使得DAG可以异步并发的写入很多交易,并最终构成一种拓扑的树状结构,极大地提高扩展性。

依据DAG有向无环图,每一笔交易都直接参与了维护全网。当交易发起后,直接广播全网,跳过矿工打包区块阶段,这样就省去了打包交易出块的时间,提升了区块链处理交易的效率。

随着时间递增,所有交易的区块链相互连接,形成图状结构,如果要更改数据,那就不仅仅是几个区块的问题了,而是整个区块图的数据更改。DAG这个模式相比来说,要进行的复杂度更高,更难以被更改。

总结一下,DAG作为一种新型的去中心化数据结构,它属于广义区块链的一种,具备去中心化的属性,但是二者的不同之处在于:

区块链组成单元是Block(区块),DAG组成单元是TX(交易)。

区块链是单线程,DAG是多线程。

区块链所有交易记录记在同一个区块中,DAG每笔交易单独记录在每笔交易中。

区块链需要矿工,DAG不需要矿工。

三、 DAG 的代表:IOTA

DAG当前的代表项目,最知名的无疑就是 IOTA。可以说,正是因为IOTA这个币种在 2017年下半年冲进市值排行第四位,才使人们真正认识到了它的底层技术:DAG有向无环图。

IOTA在DAG有向无环图的基础上提出了“缠结”概念,在IOTA里面,没有区块的概念,共识的最小单位是交易。每一个交易都会引用过去的两条交易记录哈希,这样前一交易会证明过去两条交易的合法性,间接证明之前所有交易的合法性。这样一来, 就不再需要传统区块链中的矿工这样少量节点来验证交易、打包区块,从而提升效率,节省交易费用。

四、 DAG 的现状

尽管理论上来讲,DAG有向无环图能够弥补传统区块链的一些弊端,但是目前并不成熟,应用到数字货币领域的时间也比较短,还比较年轻 。

它没有像比特币那般经过长达10年的时间来验证整个系统的安全性,也没有像以太坊那般实现了广泛的应用场景。不过,现在有些声音提出要采用“传统区块链+DAG”的数据结构,但是还没有非常突出的案例,这里就不多说了。

总结一下,本节我们介绍了区块链的衍生技术:DAG有向无环图,这是一种全新的数据结构,可以对区块链处理交易的效率、并发力达到显著的提升。

【区块链思维导图】002:比特币

在这里,杰Sir为你送出第002张区块链思维导图:002比特币~

下面是比特币的相关内容简述:

比特币(英语:Bitcoin)是一种去中心化,非普遍全球可支付的电子加密货币。比特币由中本聪(又译中本哲史)(化名)于2009年1月3日,基于无国界的对等网络,用共识主动性开源软件发明创立。截至目前2018年2月12日,比特币是目前市场总值最高的加密货币。【1】

为什么会产生比特币这种加密货币呢?或者说,比特币为什么会广受大众的欢迎,从极客圈的潮流玩意逐渐走进普通人的日常生活投资之中??

有观点认为,比特币的问世是人们憎恨商品经济中国家主权货币超发、以及货币政策干预、向往礼物经济中社区共识货币自主的结果。相信大家都会对于“通货膨胀”的问题深有感触吧?

查阅资料可得:通货膨胀,一般定义为:在信用货币制度下,流通中的货币数量超过经济实际需要而引起的货币贬值和物价水平全面而持续的上涨--用更通俗的语言来说就是:在一段给定的时间内,给定经济体中的物价水平普遍持续增长,从而造成货币购买力的持续下降。【2】

在中国,我们可以用个形象的例子来说明:在改革开放之初的1980年左右,“万元户”都是很厉害的富翁了;而过了30多年后的今天,估计要到亿万资产的级别才能算得上“富翁”了吧?? 而这上千万倍的差距变化,背后就是因为货币超发而造成的货币贬值大问题 。

中本聪对于这种“通货膨胀”类的问题可谓是深恶痛绝的。于是,他提出了自己解决问题的方法论: 基于对技术的信仰和自由货币主义的信念,提出了区块链技术系统;并且以区块链技术为依托,创造了比特币 。

有趣的是,中本聪创造了比特币系统的第一个区块,即“创世区块”,并附有一句“The Times 03/Jan/2009 Chancellor on brink of second bailout for banks”(2009年1月3日,财政大臣正处于实施第二轮银行紧急援助的边缘),而这句是当天泰晤士报的头版文章标题。

至此,人们自主发行货币系统的大胆尝试开始启动,而一旦启动了的试验车轮,便很难被阻挡下来。后来,比特币历经了不断的迭代发展,也产生了许许多多的硬分叉币种。

资料显示:

当然,比特币的发展也并不是一帆风顺的,黑客们会攻击比特币的交易网站;而很多的犯罪组织也会利用比特币进行非法的交易;甚至很多人至今认为比特币是一种“庞氏骗局”。

另外,名人大咖们对于比特币的褒贬也是不一的,资料显示:

诺贝尔经济学得主保罗·克鲁曼,认为“比特币是邪恶的”,发表了若干对于比特币的看法。

美银美林利率与外汇研究全球主管David Woo 认为“比特币能够成为电子商务的一种主要支付方式,并且成为传统货币交易的有力竞争者”。。。【3】

比特币到底是如何呢?每个人都会有自己不同的看法。不过,杰Sir觉得: 对于不清楚的新事物,在我们轻易地做下判断之前,不如先主动去学习去了解它吧。而学习比特币,先去了解比特币的白皮书就是一种很好的方法论 。

杰Sir在之前的文章里面也曾经写到过比特币的官方白皮书解读,欢迎大家查看:

题目:【说数字货币】比特币白皮书解读

链接: ;mid=2247483713idx=1sn=c9d2b968ce0da2273ae1657ce23144f9chksm=fb96470ccce1ce1ab4f2e7827c103e4d9587722678c82822b5d3749a410debf2c3daf65c761a#rd

总的来说,一个新的时代已经到来,区块链、比特币等新事物,必将会在未来展现出它们巨大的能量!我们都是时代的幸运儿与见证者,大家赶紧去学习、去了解区块链的世界吧!!!

注:

【1】摘自维基百科:比特币

【2】摘自百度百科:通货膨胀

【3】摘自维基百科:比特币

我想知道怎样在图片上面打出一块带色的矩形、

您的问题很简单。呵呵。百度知道很高兴帮助您解决您提出的问题。

1、你要使用ps工具。

2、把照片放进场景中,转化成普通矢量图片。

3、使用矩形工具,在照片上你要使用的地方推动适合的矩形大小。

4、调整填充颜色,填充您喜欢的颜色。

5、使用文本工具,添加自己喜欢的文字,改变您喜欢的字体。

6、你的QQ,我帮助您制作你喜欢的图片。

7、您可以使用flash,制作动感的图片效果。

百度知道永远给您最专业的英语翻译。

以上内容为新媒号(sinv.com.cn)为大家提供!新媒号,坚持更新大家所需的区块链知识。希望您喜欢!

版权申明:新媒号所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,不声明或保证其内容的正确性,如发现本站有涉嫌抄袭侵权/违法违规的内容。请发送邮件至 k2#88.com(替换@) 举报,一经查实,本站将立刻删除。

(0)
上一篇 2023-03-08 21:45
下一篇 2023-03-08 21:45

相关推荐

发表回复

登录后才能评论