什么是联结主义人工智能(2023年最新解答)

导读:本篇文章新媒号来给大家介绍有关什么是联结主义人工智能的相关内容,希望对大家有所帮助,一起来看看吧。

人工智能真的靠谱吗

一场Google AlphaGo与围棋世界冠军李世石的对弈吸引了全世界的目光,也让人工智能再度成为业界讨论的热点话题。人工智能自1943年诞生以来,在几十年的发展历程中经历了多次潮起潮落,人们却从未停止过对人工智能的研究与探索。当下,摩尔定律驱动计算力不断增长,云计算、大数据、移动互联网这些趋势在影响着人类社会的生活与生产方式,也成为人工智能的催化剂,促使着人工智能不断的演进。那么,在大数据时代到来的背景下,人工智能未来会朝着什么方向发展?人工智能在未来能够超越人类么?人工智能两大流派:联结主义和符号主义孰优孰劣?近日,在百分点数据与价值国际论坛上,来自北京大学数学学院教授林作铨、东南大学计算机与工程学院教授漆桂林、普惠金融首席数据科学家李文哲以及百分点集团技术副总裁刘译璟等多位人工智能领域的专家就这些话题进行了深度讨论。

众所周知,人类的智能主要包括归纳总结和逻辑演绎,与之对应的就是人工智能中的联结主义和符号主义两大最主要的流派。前者典型方法为神经网络、统计学习、深度学习等;而后者则包括形式语言、逻辑推理、专家系统等。这两大流派在人工智能发展历史中互有起落。而随着2006年加拿大多伦多大学教授、机器学习泰斗Geoffrey Hinton在《科学》杂志发表深度学习方面的论文,深度学习在学术界以及商业界持续升温,语音识别、图像识别、自然语言处理、搜索广告等深度学习相关的应用为之大热。作为联结主义的代表,深度学习俨然成为人工智能当下最为热门的领域。

对此,北京大学林作铨教授认为:“2006年开始迅速发展的深度学习恰恰在人工智能的基本原理方面并没有太大贡献。深度学习的本质是靠大量数据进行层级计算,第一层学习之后变成另一种表示,然后特征的抽取变成第二层,层级越多所达到的效果一定会更好;另外,深度学习每一层的计算或者所谓的学习其实本质就是应用数学问题,即解出一个信息函数,但是原则上这些非线性函数都是难计算的。因此,带来两大问题就是:首先,深度学习网络不断增加深度层级的意义;另外就是每一层级的计算的理论问题,计算数学解决不了,深度学习也解决不了。”

东南大学计算机与工程学院教授漆桂林则认为,让机器学习具备认知和推理能力是人工智能领域下一步需要真正思考的难题,“不是所有公司都拥有Google这样的大数据能力,Google跑深度学习的效果非常好。但是换了另外一家公司却可能没那么好的效果。如何在更小数据量上面提高机器的学习能力,其实需要让它具有认知和推理能力。目前几个深度学习领域的权威专家已经在不同场合表示需要把人类的规则推理引入到神经网络,使得神经网络具有更好的解释性。”

“人们对于深度学习的理解还没到我们想要的人工智能的程度,想要通过深度学习的模型达到人的智慧还非常难做到。”普惠金融首席数据科学家李文哲补充道。

对于符号主义而言,认为人工智能源自数学逻辑,核心思想就是应用逻辑推理法则,在人工智能中体现就是机器定理证明。符号主义认为知识是信息的一种形式,是构成智能的基础,知识表示、知识推理、知识运用是人工智能的核心,知识通过符号表示,认知即为符号的推理过程,推理过程又可通过形式化语言来描述,并且主张通过逻辑方法来建立人工智能统一体系。林作铨教授表示:“符号主义的核心目标仍然是探寻人工智能的基本原理,属于基础研究。人工智能的原始目的之一就是通过计算机来模拟人的智能行为,探寻智能的基本原理,这个目标还远远没有达到。”

人工智能之所有在当下受到广泛关注,除了类似Watson参加危险游戏、Google AlphaGo对战围棋世界冠军这些热门事件外,更多的是来自基于人工智能的应用开始得到广泛使用,比如银行领域的自动欺诈检测系统应用、零售商的销售定价、智能家居机器人、人脸识别系统、自动语音识别等等。那么对于公司而言,在人工智能领域方向是选择联结主义还是符号主义呢?

对此,普惠金融首席数据科学家李文哲以金融业为例表示两种方向都非常有用,他表示:“金融领域的特点是,公司刚成立不会拥有大量数据,因此不会尝试联结主义这种做法,因为像深度学习肯定需要大量的数据才能得到一个较好的结果。在数据量较少的时候,专家的经验才是最重要的,这就属于符号主义。比如对欺诈的分析、信用风险的评估,这些都是基于专家先前的经验来做的。而当公司发展多年之后,积累了大量的数据样本,则可以尝试联结主义的算法。”在李文哲看来,采用符号主义还是联结主义最大的考虑因素就是数据量,“具体到公司业务上考虑联结主义还是符号主义就是公司的数据量和数据复杂度,符号主义很多都是靠经验,很多逻辑是人为去定义。而当数据量非常庞大、而且属性又非常复杂的时候,就很难用这种方式去定义,这时候就需要采用深度学习的方式。”

不过,在李文哲看来,深度学习仍然处于发展的初级阶段,用户仍然在做很多尝试和实验,他表示:“深度学习从2006年开始逐渐火起来,但还是较初级的阶段,很多做深度学习的人在‘蛮干’,尝试不同的方法。当发展到一定阶段之后,就会有人研究理论层面。”

通常,人工智能往往划分为三个层级,即弱人工智能、强人工智能以及超人工智能。像Google的AlphaGo就是弱人工智能的典型代表,在某一单个领域拥有强大的人工智能程序;另外,像机器人写稿、Siri、微软小冰等都属于这个层级;通常弱人工智能并没有自主意识,按照固定结构去计算,并获取答案。而随着大数据以及计算能力的普及,弱人工智能可以被看成已经基本实现。那么,能够主动寻找问题、构造问题的模型、并解决问题的强人工智能什么时候到来?甚至超过人类的超人工智能时代离我们又有多远?

众多专家认为强人工智能或者超人工智能时代将会在不远的将来到来。美国未来学家、Google工程主管Ray.Kurzweil在其《奇点临近》一书中更是预言:“2045年左右,人工智能将会来到一个\'奇点\',跨越这个临界点,人工智能将超越人类智慧,人类历史将会彻底改变。”不过,林作铨教授并不认同这种观点,他表示:“关于人工智能威胁人类的话题这几十年以来都一直持续不断,我并不认同2045年会是人工智能超越人类的时间奇点,最近几年搞的强人工智能,也有人称之为通用人工智能,基本都不了了之,在短时间能很难看到实现的可能。”

“人工智能已经有很多成熟的方法得到了应用,已经成为基础设施中重要的一部分。历史上,人工智能也热过好几次,这次人工智能热对于人工智能发展有推动作用,虽然可能有泡沫,但是这个过程其实对人工智能发展有帮助。”林作铨教授最后表示道。

什么是联结主义人工智能(2023年最新解答)  第1张

《人工智能教育应用》模块一

模块一:人工智能与教育(MOOC课程学习笔记)

一、了解AI的发展

1.什么是人工智能?

人工智能(Artificial Intelligence):包括人工和智能两个方面,人工是合成的、人造的意思,智能分为思维流派,知识阈值流派,进化流派。人工智能是一门自然科学,社会科学的 交叉学科 ,综合了信息、逻辑、思维、生物、心理、计算机、电子、语言机器人等学科。基础学科是数学,指导学科是哲学。可以从狭义和广义两个角度来定义。 从狭义角度来说 ,人工智能是计算机学科的一个分支,是用计算机模拟或实现的智能,研究如何使机器具有智能(特别是人类智能如何在计算机上实现或再现)的科学与技术。 从广义角度来说 ,人工智能是研究、开发用于模拟、延伸和拓展人和其他动物的智能,以及开发各种机器智能和智能机器的理论、方法、技术及应用系统的综合性学科。

应用:智能快递服务,智能规划出行方案,题目拍照解析

2.人工智能的类型和流派?

根据人工智能是否能真正实现推理、思考和解决问题,把人工智能分为 弱人工智能 和 强人工智能 。

弱人工智能 :指不能制造出真正地推理和解决问题的智能机器,不真正拥有智能和自主意识,只专注于完成某个特定的任务。如搜索引擎、智能手机。

强人工智能 ::指真正能思维的智能机器,有知觉和自我意识。可分为类人,非类人。

人工智能可分为三个学派:符号主义学派(IBM深蓝的国际象棋比赛)、联结主义学派(谷歌kelipus相机)、行为主义学派(谷歌机器狗)

3.人工智能发展阶段

人工智能的发展阶段大致可分为形成期、发展期、繁荣期。

形成期 (1956-1980):这一时期符号主义盛行。

1956年人工智能这个词首次出现在达特茅斯会议上。约翰麦卡锡提出Artificial Intelligence一词,这标志着其作为一个研究领域的正式诞生。

1958年,有两层神经网络的感知机被提出,他是当时收个可以进行机器学习的人工神经网络。

1965年,约翰麦卡锡帮助MIT退出来世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。

1968年,美国斯坦福研究所研制的移动式机器人Shakey具备一定的人工智能:感知、环境建模、行为规划、执行任务。是世界上第一代机器人,拉开了第三代机器人研发的序幕。

1974-1980:受数学模型、生物原型、技术条件,人工智能停滞期。

发展期 (1980-2000):1980年,出现XCON的专家系统,能按照用户的需求,为计算机系统自动选择组件,帮助美国数字公司节约大量费用。

1982-1986:约翰霍普菲尔德发明了Hopfield网络,是一种结合了存储系统和二元系统的神经网络,可以让计算机以一种全新的方式处理信息。

1986年:BP反向传播算法催生了联结主义的发展。

1987-2000:再一次进入低谷期。

繁荣期 (2000-):1997年:IBM深蓝

2006年:辛顿提出深度学习神经网络打破BP发展瓶颈。

2011年:沃森作为选手参加《危险边缘》取胜。

2012年:卷积神经网络,谷歌自动驾驶汽车

2013年:深度学习算法识别率高达99%

2016年:AlphaGo

2017年:AlphaGo Zero、索菲亚

二、AI的关键技术

4.什么是机器学习?

机器学习是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学的交叉学科。研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。核心是重新组织已有的知识结构使之不断改善自身的性能。

5.机器学习的分类?

(1)根据 学习方法 可分为 传统机器学习 和 深度学习

传统机器学习 :从一些观测样本出发,试图发现不能通过原理分析获得的规律,实现对未来数据行为或趋势的准确预测。主要特点是平衡了学习结果的有效性和学习模型的可解释性,为解决有限样本的学习问题提供了一种框架。主要用于有限样本学习下的,模式分类、回归分析、概率密度估计。应用:自然语言处理、语音识别、图像识别、信息检索、生物信息。

深度学习 :是建立深层结构模型的学习方法。特点是多层神经网络。形成了卷积神经网络(用于空间性分布数据)和循环神经网络两类模型(用于时间性分布数据)。

区别:案例分析:狗和猫等动物的识别。

传统机器学习需要先定义相应的面目特征,如有没有胡须、耳朵、鼻子、嘴巴的模样等,以此来进行对象的分类识别。深度学习则会自动找出这个分类问题所需要的重要特征,并进行对象识别。

(2)根据 学习模式 可分为 监督学习 、 无监督学习 、 强化学习

监督学习 :利用已标记的有限训练数据集,通过某种学习策略建立一个模型,实现对新数据的分类。特点是要求训练样本的分类标签已知。特点是不需要训练样本和人工标注数据。

无监督学习 :利用无标记的有限数据描述隐藏在未标记数据中的结构或规律。

强化学习 :也称增强学习,他是智能系统从环境到行为映射的学习,以使强化信号函数值最大。特点是没有监督者,只有一个反馈信息,反馈是延迟的,不是立即生成的。

(3)根据 算法特点 可分为 迁移学习 、 主动学习 、 演化学习

迁移学习 :当在某些领域无法取得足够多的数据进行模型训练时,利用另一领域数据获得的关系进行的学习。

主动学习: 通过一定的算法查询最有用的未标记样本,并交由专家进行标记,然后用查询到的样本训练分类模型来提高模型的精度。

演化学习: 对优化问题性质要求极少,只需能够评估解的好坏即可,适用于求解复杂的优化问题,也可直接用于多目标优化。演化算法包括粒子群优化算法、多目标优化算法。

6.什么是大数据?

大数据 是指包含搜集、保存、管理、分析在内的动态的 数据集合 。特征是规模性、高速性、多样性、价值性、真实性

在教育中的应用:教育数据挖掘和学习分析

教育数据挖掘 是对学习行为和过程进行量化、分析和建模,利用统计学、机器学习和数据挖掘等方法来分析 教与学过程中所产生的所有数据。

学习分析技术 是对学习者及其学习环境的数据测量、收集和分析,从而理解和 优化学习过程以及学习环境 。

7.什么是知识图谱?

知识图谱是一个将现实世界映射到数据世界,由节点和边组成的语义网络。其中节点代表物理世界的实体或概念,边代表实体的属性和他们之间的关系。现实世界存在各种各样的关系,知识图谱就是合理摆放他们之间的关系。本质上是一种语义网络,旨在描述客观世界中的概念、实体、事件及其之间的关系。

从领域上来看可分为:通用知识图谱和特定领域知识图谱。

应用:语义搜索、智能问答、可视化决策支持

教育领域的应用:在智能教学系统中,利用知识图谱技术挖掘与答案相关的知识点,为学习者提供更合适的导学建议。

7.什么是自然语言处理(Natural Language Process,nlp)?

自然语言处理是计算机科学、人工智能、语言学关注计算机和人类自然语言之间的相互作用的领域,研究能实现人与计算机之间用自然语言进行有效通信 的各种理论和方法。

8.自然语言的处理过程?

包括自然语言理解和自然语言生成两个部分。

9.自然语言处理的研究领域?

研究领域十分广泛,如:机器翻译、语义理解、问答系统。文本分析(自动作文评价系统)、推荐系统

10.自然语言处理面临的四大挑战?

词法、句法、语义、语用和语音等不同层面存在不确定性;

新的词汇、术语、语义和语法导致未知语音现象的不可预测性;

数据资源的不充分使其难以覆盖复杂的语音现象;

语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述。

11.机器人技术

第一代机器人是程序控制机器人,它们能够按照拟定程序进行重复工作;

第二代机器人是自适应机器人,自身配备相应的感觉传感器,能随环境的变化而改变自己的行为,但还没有达到完全自治的程度;

第三代机器人是智能机器人,它们带有多种传感器,能对感知到的信息进行处理,控制自己的行为,具有很强的自适应能力、学习能力和自治功能。

智能控制方法:专家控制、模糊控制、神经网络控制、专家递阶控制

12.什么是跨媒体智能?

跨媒体:文本、图像、语音、视频及其交互属性将会紧密混合在一起。

跨媒体智能是实现机器认知外部世界的基础智能。(潘云鹤)

13.跨媒体智能的关键技术?

跨媒体智能检索、跨媒体分析推理、跨媒体知识图谱构建、跨媒体智能存储

14.跨媒体智能的应用?

智能城市、医学、教育领域(可穿戴技术、脑机接口。多模态的角度)

15.智能时代的教育挑战?

挑战一:如何培养具有AI素养的时代人才?

挑战二:教育管理者如何重构工作流程?

挑战三:教师如何应对人工智能带来的冲击?

挑战四:教师如何应用人工智能转变教学方式?

挑战五:学生如何运用人工智能技术转变学习行为和方式?

挑战六:智能时代课程内容如何改造升级?

挑战七:如何应对人工智能教育中的伦理、社会及安全问题?

17.AI教育应用的内涵与特征?

智能教育:狭义的人工智能教育:以人工智能为内容的教育,目的是培养掌握机器智能技术的专业化人才,以满足技术发展的需要。广义的智能教育:智能技术支持的教育、学习智能技术的教育、促进智能发展的教育。

智慧教育:是在信息技术的支持下,为发展学生智慧能力而开展的教育,他强调构建技术融合的学习环境,使教师能够高效率的教学、使学生能够个性化学习。

智能教育是技术使能的教育。智能技术不但让学习环境更丰富、灵巧,也让机器在某些方面具有类人甚至超人的智能。

智慧教育则是智慧教育理念引领的,先进的智慧教育理念决定了智慧教学法的模态,不同的模态需要教师具备相应的教学技能,这些技能需要智能环境的支持才能得以实施。

18.人工智能在教育中的应用的特征?

智能化

人工智能技术是促变教育信息化的核心技术,具备转变教与学方式的潜能。未来在教育领域将会有越来越多支持教与学的智能工具。智能教育将会给学习者带来新的学习体验,为教师实施高质量的教学提供基础。在教育信息技术支持下打造出教育信息生态系统,将在线学习环境与现实情境无缝融合,使人机交互更加便捷智能,泛在学习、个性化学习将成为一种新常态。

人机协同

人机协同教育可以发挥教师与人工智能的不同优势,促进学生的个性化发展。机器主要负责重复性、单调性、递归性的工作,教师负责创造性、情感性、启发性的工作。

教学自动化

人工智能可直接应用学科知识、教学法知识、学习者知识,实现知识传播的自动化,因此可用于支持教育活动

个性化

为了扩大教学规模、提高教学效率,传统的教学组织采用班级授课制,类似于工厂批量化生产,忽视了学生之间的个性化差异。人工智能时代的到来时教学组织方式趋向个性化教育成为可能。人工智能可分析每位学生的过程性学习数据,精准鉴别其知识水平、学习需求、个人爱好,并构建学习者模型,据此实现个性化资源、学习路径、学习服务的推送。这意味着批量化生产教育时代的终结,个性化教育的开始。

跨学科融合

人工智能涉及多个学科领域,单一的学科教学已无法满足社会发展的需求,跨学科融合教学受到推崇。为了适应学生个性化发展,未来的教育更应该培养学生多元的综合性发展。以人工智能为核心,提供真实问题情境的项目实践,侧重激发、培养和提高学生的计算思维、创新思维和元认知。

赫伯特·A·西蒙的西蒙和人工智能

20世纪50年代以后,西蒙的研究方向发生了重大转移,逐渐转向了认知心理学和人工智能领域。西蒙认为,社会科学缺乏像自然科学一样的科学性,社会科学需要借鉴自然科学严格和精确的研究方法,才能成为真正意义上的科学。同时,在西蒙看来,经济学、管理学、心理学等学科所研究的课题,实际上都是“人的决策过程和问题求解过程”。要想真正理解组织内的决策过程,就必须对人及其思维过程有更深刻的了解。因此,借助于计算机技术的发展,西蒙与同事纽厄尔等人一起开始尝试用计算机来模拟人的行为,从而创建了认知心理学和人工智能研究新领域。西蒙认为,人的思维过程和计算机运行过程存在着一致性,都是对符号的系列加工,因此,可以用计算机来模拟人脑的工作。他甚至大胆地预言,人脑能做的事,计算机同样也可以完成。“初级知觉和记忆程序(EPAM)”和“通用问题求解系统(GPS)”等人工智能软件的问世,部分证实了西蒙的预言。

当时人工智能的主要学派有下列三家:①符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统假设和有限理性原理。这一学派认为人工智能源于数理逻辑。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流学派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(Nilsson)等。②联结主义(Connectionism),又称为仿生学派(Bionicsism)或生理学派(Physiologism),其原理主要为神经网络及神经网络间的连接机制与学习算法。这一学派认为人工智能源于仿生学,特别是人脑模型的研究。从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下了坚实的基础。③行为主义(Actionism),又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),其原理为控制论及感知-动作型控制系统。他们对人工智能发展历史具有不同的看法,这一学派认为人工智能源于控制论。

西蒙在人工智能中做出的最基本贡献,是他提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis)。在这一意义上,他是符号主义学派的创始人和代表人物之一。他的基本观点是:知识的基本元素是符号,智能的基础依赖于知识,研究方法则是用计算机软件和心理学方法进行宏观上的人脑功能的模拟。符号主义的主要依据是两个基本原理:①物理符号系统假设原理。②由西蒙提出的有限合理性原理。这一学说鼓励着人们对人工智能进行全面的探索。西蒙认为,任何一个物理符号系统如果是有智能的,则肯定能执行对符号的输入、输出、存储、复制、条件转移和建立符号结构这样六种操作。反之,能执行这六种操作的任何系统,也就一定能够表现出智能。根据这个假设,我们可以推出以下结论:人是具有智能的,因此人是一个物理符号系统;计算机是一个物理符号系统,因此它必具有智能;计算机能模拟人,或者说能模拟人的大脑功能。

1956年,西蒙、纽厄尔和另一位著名学者约翰·肖(John Cliff Shaw)一起,成功开发了世界上最早的启发式程序“逻辑理论家”LT(1ogic Theorist) ,从而使机器迈出了逻辑推理的第一步。在卡内基-梅隆大学的计算机实验室,西蒙和纽厄尔从分析人类解答数学题的技巧入手,让一些人对各种数学题作周密的思考,要求他们不仅写出求解的答案,而且要说出自己推理的方法和步骤。通过对实例的大量观察,西蒙和纽厄尔广泛收集了人类求解一般性问题的各种方案。他们发现,人们求解数学题时,通常采用试凑的办法。试凑时并不一定列出所有的可能性,而是用逻辑推理来迅速缩小搜索的范围。人类证明数学定理也有类似的思维规律,通过把一个复杂问题分解成几个简单的子问题,以及利用已知常量代入未知变量等方法,用已知的公理、定理或解题规则进行试探性推理,直到所有的子问题最终都变成已知的,然后根据记忆中的公理和已被证明的定理,运用代入法、替换法来解决子问题,最终解决整个问题。人类求证数学定理同样也是一种启发式搜索,与电脑下棋的原理有异曲同工之妙。在这一基础上,他们利用“逻辑理论家”程序向数学定理发起挑战,建立了机器证明数学定理的启发式搜索法,并用计算机证明了罗素、怀特海的数学名著《数学原理》一书第二章52个定理中的38个定理(1963年,经过改进的“逻辑理论家”程序在一部更大的电脑上,最终完成了第二章全部52条数学定理的证明)。

基于这一成功,西蒙和纽厄尔把“逻辑理论家”程序扩充到了人类求解一般问题的过程,设想用机器模拟具有普遍意义的人类思维活动。“逻辑理论家”受到了人们的高度评价,认为它是用计算机探讨人类智力活动的第一个真正意义上的成果,也是图灵关于机器可以具有智能这一论断的第一个实际的证明。在开发“逻辑理论家”程序的过程中,西蒙首次提出并成功应用了“链表”(list)作为基本的数据结构,并设计与实现了表处理语言IPL (Information Processing Language)。在人工智能的历史上,IPL是所有表处理语言的始祖,也是最早使用递归子程序的语言。其基本元素是符号,并首次引进表处理方法。IPL最基本的数据结构是表结构,可用以代替存储地址或有规则的数组,这有助于将程序员从繁琐的细节中释放出来而在更高的水平上思考问题。IPL的另一特点是引进了生成器,每次产生一个值,然后挂起,等待被调用,在调用时从被挂起的地方开始。早期的很多人工智能程序都是用表处理语言编制而成的。表处理语言本身也因此经历了一个发展与完善的过程,其最后一个版本IPLⅤ可以处理树形结构的表。

1956年夏天,数十名来自数学、心理学、神经学、计算机科学与电气工程等各领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,讨论如何用计算机模拟人的行为,并根据麦卡锡(J.McCarthy,1971年图灵奖获得者)的建议,正式把这一学科领域命名为“人工智能”(Artificial Intelligence)。会议的召开标志着人工智能这一学科正式诞生。赫伯特·西蒙指出,人工智能的研究是学会怎样编制计算机程序来完成人类机智的行为。西蒙带到会议上去的“逻辑理论家”是当时惟一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔,以及达特茅斯会议的发起人麦卡锡和明斯基(M.L.Minsky,1969年图灵奖获得者),被公认为是人工智能的奠基人。他们四人于1960年组成了第一个人工智能研究小组,有力地推动了人工智能的发展。

1960年,西蒙夫妇做了一个有趣的心理学实验,这个实验表明人类解决问题的过程是一个搜索的过程,其效率取决于启发式函数(heuristic function)。在这个实验的基础上,西蒙、纽厄尔和肖又一次成功地合作开发了能解答11种类型不同问题的“通用问题求解系统”GPS(General Problem Solver)。这一求解系统的基本原理,是找出目标要求与当前态势之间的差异,选择有利于消除差异的操作,以逐步缩小差异并最终达到目标。西蒙曾多次强调指出,科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序来实现。1976~1983年间,西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有六个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙的上述论点。从而开拓出人工智能中“问题求解”的一大领域。

西蒙转向计算机技术后,就一直研究计算机下棋问题。1966年,西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序MATER。1997年,IBM的“深蓝”(Deep Blue)计算机打败了白俄罗斯的国际特级大师卡斯帕罗夫以后,81岁的西蒙还和俄亥俄州立大学的人工智能专家T.Munakata一起,在《ACM通信》杂志的8月号上发表了《人工智能给我们的教训》(AI Lessons)一文,对此事进行了评论,指出一个运行于计算机上的国际象棋程序拥有2600分等级分,相当于白俄罗斯国际象棋世界冠军卡斯帕罗夫的级别水平。

西蒙在人工智能方面的另一大贡献,是发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得了很大成功。在知识表示方法中,语义网络(semantic network)是—种重要而有效的方法。这种表示法是奎林(M.R.Quillian)在20世纪60年代后期提出来的,作为人类联想记忆的一个显示心理学模型。奎林在开发TLC系统(Teachable Language Comprehender)中用它来描述英语的词义,模拟人类的联想记忆。但用语义网络作为一般的知识表示方法,则是西蒙在1970年研究自然语言理解的过程中把它的各种概念基本明确下来的。20世纪70年代中期,西蒙和CAD专家依斯特曼(C.M.Eastman) 合作,研究住宅的自动空间综合,不仅开了“智能大厦”(intelligent building)的先河,还成为智能CAD即ICAD研究的开端。

起源于20世纪60年代末70年代初,当前受到极大重视的决策支持系统DSS(Decision Support System),其概念的核心是关于决策模式的理论,而这个理论也是由西蒙奠定基础的。在不确定条件下的决策模型除了贝叶斯模型外,另一个比较重要的理论模型是采用Von Neumann-Morgenstern效用函数的期望值最大模型。西蒙在《人的模型》一书中形成了电子计算机能模拟人的思维的思想,开始了人工智能的系列研究。针对效用函数的期望值最大模型,西蒙提出了有限合理性模型。有限合理性模型的基本思想是:首先,所有的决策者涉及到的是一个有限的范围;其次,我们不能对将来给出一个概率值,但最好有一个关于将来事件的大致概念;第三,如果后者不以前者为转移的话,我们在一个领域中的愿望可能与在另一个领域中的愿望完全不同;最后,我们更注重搜集信息而不是分析需求,在收集信息后,最通常的抉择是基于直觉。基于西蒙关于决策模式的理论,凯恩(P. G. Keen)提出了一种设计方法,称为“自适应法”(self-adaptive method),把决策支持系统当成一种自适应系统,由DSS应用系统、DSS生成系统和DSS工具三个技术层次组成,由决策者运行,且能适应时间的变化。西蒙曾称赞这样的系统“能适应三个时间范围内的各种变化,即在短期运行中,系统能在一个相对狭窄的范围内寻求答案;在中期运行中,系统能通过修改其功能和活动而学会适应;在长期运行中,系统能发展到适应差别极大的行为风格和功能”。这些研究,使计算机技术与管理决策紧密连接起来。

神经网络从何而来?

【嵌牛导读】神经网络从何而来?这里说的『从何而来』,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。

【嵌牛鼻子】神经网络、深度学习

【嵌牛提问】神经网络的由来?

【嵌牛正文】深度学习与神经网络是近几年来计算机与人工智能领域最炙手可热的话题了。为了蹭这波热度,博主也打算分享一些自己的经验与思考。第一篇文章想探讨一个非常基础的问题:神经网络从何而来?这里说的『从何而来』,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。

首先,需要为『神经网络』正一下名。在人工智能领域,我们通常所说的神经网络(Neural Networks)全称是人工神经网络(Artificial Neural Network),与之对应的是我们用肉长成的生物神经网络(Biology Neural Network)。众所周知,人工神经网络受生物神经网络的启发而产生,并在几十年间不断进步演化。可要论人类对人工智能的探索历史,却远远长于这几十年。为了深刻了解神经网络出现的背景,我们有必要从更早的历史开始说起。

简单说,人工智能想做的事情就是去总结和提炼人类思考的过程,使之能够机械化、可重复。从各种神话、传说来看,我们的祖先在几千年前就对这件事儿充满了好奇与遐想。到两千多年前,一大批伟大的哲学家在希腊、中国和印度相继诞生,并将人类对这一问题的认识推向了新的高度。为避免本文成为枯燥的哲学史,这里不想举太多的例子。伟大的希腊哲学家亚里士多德在他的《前分析篇》中提出了著名的三段论(sollygism),类似于:

所有希腊人是人

所有人终有一死

因此所有希腊人终有一死

虽然这是我们现在已经无比熟悉的推理模式,但是要在2000年前从无到有系统总结出一系列这样的命题与推理模式,却着实不易。有了『三段论』这种的武器,人们对问题的认识与决策就能从感性真正走向理性,做到可以重复。此外,我们熟悉的欧式几何也是当时这种逻辑推理学派的代表。欧式几何以一系列的公理为基础,基于一套严密的逻辑推理体系,最终得到结论的证明,现在仍然是每个学生需要反复训练的思维体操。

随着时间的演进,认知哲学与逻辑学也在不断的发展。在17世纪时,以笛卡尔、莱布尼茨为代表的哲学家进一步提出通过数学的方式对逻辑推演进行标准化,这也是对人脑推理与思考的再次抽象,为后续以后基于数字电路的人工智能打下了基础。之后,数理逻辑进一步发展,而到了20世纪中期,数理逻辑又一次取得了巨大的突破,哥德尔不完备理论、图灵机模型等的相继提出,科学家们既认识到了数理逻辑的局限性,也看到了将推理机械化的无限可能性,一种新的计算方式呼之欲出。

在图灵机的思想指导下,第一台电子计算机很快被设计出来,为人工智能的真正实现提供了物质上的基础。其实回望人工智能历史上的历次重大飞跃,硬件技术的发展无不扮演者重要的作用。很多看似有效的算法都苦于没有足够强大的计算平台支持无疾而终,而计算能力的提升也可以促进科学家们们摆脱束缚,在算法的研究道路上天马行空。深度学习这些年的迅猛发展,很大程度就是得益于大规模集群和图形处理器等技术的成熟,使得用复杂模型快速处理大规模数据成为可能。

1956年达特茅斯会议上,斯坦福大学科学家约翰·麦卡锡(John McCarthy)正式提出了『人工智能』这一概念, 标志着一个学科的正式诞生,也标志着人工智能的发展开始进入了快车道。如果说逻辑符号操作是对人类思维的本质的抽象,那么利用电子计算机技术来模拟人类的符号推理计算也是一个自然而然的想法。在艾伦·纽威尔(Alan Newell)和赫伯特·西蒙(Herbert A.Simon)等大师的推动下,以逻辑推演为核心符号主义(symbolicism)流派很快占据了人工智能领域的重要地位。符号主义在很多领域取得了成功,比如在80年代风靡一时的专家系统,通过知识库和基于知识库的推理系统模拟专家进行决策,得到了广泛的应用。而本世纪初热炒的语义网络以及当下最流行的知识图谱,也可以看做这一流派的延续与发展。

符号主义最大的特点是知识的表示直观,推理的过程清晰,但是也存在着许多局限性。除去在计算能力方面的困扰,一个很大的问题就在于虽然我们可以通过逻辑推理解决一些复杂的问题,但是对一些看似简单的问题,比如人脸识别,却无能为力。当看到一张人脸的照片,我们可以毫不费力的识别出这个人是谁,可这个过程并不需要做什么复杂的推理,它在我们的大脑中瞬间完成,以至于我们对这个过程的细节却一无所知。看起来想通过挖掘一系列严密的推理规则解决这类问题是相对困难的,这也促使很多人去探索与人脑工作更加贴合的解决方案。实际上在符号主义出现的同时,人工智能的另一重要学派联结主义(Connectionism)也开始蓬勃发展,本文的『主角』神经网络终于可以登场了。

在文章的一开始就提到,我们现在所说的人工神经网络是受生物神经网络启发而设计出来的。在1890年,实验心理学先驱William James在他的巨著《心理学原理》中第一次详细论述人脑结构及功能。其中提到神经细胞受到刺激激活后可以把刺激传播到另一个神经细胞,并且神经细胞激活是细胞所有输入叠加的结果。这一后来得到验证的假说也成为了人工神经网络设计的生物学基础。基于这一假说,一系列模拟人脑神经计算的模型被相继提出,具有代表性的有Hebbian Learning Rule, Oja\'s Rule和MCP Neural Model等,他们与现在通用的神经网络模型已经非常相似,例如在Hebbian Learning模型中,已经可以支持神经元之间权重的自动学习。而在1958年,Rosenblatt将这些模型付诸于实施,利用电子设备构建了真正意义上的第一个神经网络模型:感知机(Perceptron)。Rosenblatt现场演示了其学习识别简单图像的过程,在当时的社会引起了轰动,并带来了神经网络的第一次大繁荣。此后的几十年里,神经网络又经历了数次起起伏伏,既有春风得意一统天下的岁月,也有被打入冷宫无人问津的日子,当然,这些都是后话了。

本文更想讨论这样一个问题:神经网络产生的动机仅仅是对生物学中对神经机制的模仿吗?在神经网络产生的背后,还蕴含着一代代科学家怎么样的思想与情怀呢?事实上,在神经网络为代表的一类方法在人工智能中又被称为联结主义(Connectionism)。关于联结主义的历史,一般的文献介绍按照惯例会追溯到希腊时期哲学家们对关联性的定义与研究,例如我们的老朋友亚里士多德等等。然而当时哲学家研究的关联其实并不特指神经元之间的这种关联,比如前文提到的符号推理本身也是一种形式关联,在希腊哲学中并没有对这两者进行专门的区分。所以硬要把这些说成是连接主义的思想起源略微有一些牵强。

前文提到,在数理逻辑发展过程中,17世纪的欧陆理性主义起到了重要的作用。以笛卡尔、莱布尼茨等为代表的哲学家,主张在理性中存在着天赋观念,以此为原则并严格按照逻辑必然性进行推理就可以得到普遍必然的知识。与此同时,以洛克、休谟等哲学家为代表的英国经验主义,则强调人类的知识来自于对感知和经验归纳。这一定程度上是对绝对的真理的一种否定,人类的认识是存在主观的,随经验而变化的部分的。如果在这个思想的指导下,我们与其去寻找一套普世且完备的推理系统,不如去构造一套虽不完美但能够随着经验积累不断完善的学习系统。而休谟甚至提出了放弃揭示自然界的因果联系和必然规律,而是依据“习惯性联想”去描绘一连串的感觉印象。这其实和神经网络设计的初衷是非常类似的:重视经验的获得与归纳(通过样本进行学习),但对模型本身的严谨性与可解释行则没有那么关注,正如有时候我们愿意把神经网络模型看做是一个『黑箱』。

然而单单一个『黑箱』是不能成为经验的学习与整理的系统的,我们还需要去寻找构建『黑箱』的一种方法论。现代哲学发展到20世纪初期时,在维特根斯坦和罗素等哲学家的倡导下,产生了逻辑经验主义学派。依托当时逻辑学的迅猛发展,这一主义既强调经验的作用,也重视通过严密的逻辑推理来得到结论,而非简单的归纳。在数理逻辑领域颇有建树的罗素有一位大名鼎鼎的学生诺伯特·维纳,他创立的控制论与系统论、信息论一道,为信息科学的发展提供了坚实的理论基础。而神经网络模型的创立也深受这『三论』的影响。前文提到MCP神经元模型的两位创始人分别是罗素和维纳的学生。作为一个系统,神经网络接受外部的输入,得到输出,并根据环境进行反馈,对系统进行更新,直到达到稳定状态。这个过程,同样也是神经网络对环境信息传递的接受和重新编码的过程。如果如果把神经网络当做一个『黑盒』,那么我们首先关心该是这个黑盒的输入与输出,以及如何根据环境给黑盒一个合理的反馈,使之能够进行调整。而黑盒内部的结构,则更多的成为了形式的问题。我们借鉴生物神经网络构造这个黑盒,恰好是一个好的解决方案,但这未必是唯一的解决方案或者说与人类大脑的神经元结构存在必然的联系。比如在统计学习领域中最著名的支持向量机(Support Vector Machines),最终是作为一种特殊的神经网络而提出的。可当其羽翼丰满之后,则和神经网络逐渐脱离关系,开启了机器学习的另一个门派。不同的模型形式之间可以互相转化,但是重视经验(样本),强调反馈的思想却一直保留下来。

前面说了这些,到底神经网络从何而来呢?总结下来就是三个方面吧:1.对理性逻辑的追求,对样本实证的重视,为神经网络的诞生提供了思想的基础。2.生物学与神经科学的发展为神经网络形式的出现提供了启发。3.计算机硬件的发展与计算能力的提升使神经网络从理想变成了现实。而这三方面的发展也催生着神经网络的进一步发展与深度学习的成熟:更大规模的数据,更完善的优化算法使网络能够学习到更多更准确的信息;对人脑的认识的提升启发设计出层次更深,结构更高效的网络结构;硬件存储与计算能力提升使海量数据的高效训练成为可能。而未来神经网络给我们带来的更多惊喜,也很大可能源自于这三个方面,让我们不妨多一些期待吧。

结语:以上就是新媒号为大家整理的关于什么是联结主义人工智能的相关内容解答汇总了,希望对您有所帮助!如果解决了您的问题欢迎分享给更多关注此问题的朋友喔~

以上内容为新媒号(sinv.com.cn)为大家提供!新媒号,坚持更新大家所需的百科知识。希望您喜欢!

版权申明:新媒号所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,不声明或保证其内容的正确性,如发现本站有涉嫌抄袭侵权/违法违规的内容。请发送邮件至 k2#88.com(替换@) 举报,一经查实,本站将立刻删除。

(0)
上一篇 2023-03-09
下一篇 2023-03-09

相关推荐

发表回复

登录后才能评论